A fully resolved active musculo-mechanical model for esophageal transport
نویسندگان
چکیده
Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multilayered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-reinforced tube. Before considering the full model of the esophagus, however, we first consider a standard benchmark problem of flow past a cylinder. Next a simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Finally, three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall resulting from the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function.
منابع مشابه
A complete set of control equations for the human musculo-skeletal system.
A mathematical model of the total human musculo-skeletal system is presented. The model comprises a link-mechanical and a musculo-mechanical set of ordinary first-order differential equations which deacrihe the dynamics of the segment model and muscle model respectively. The interdependence of the two sets of equations is demonstrated. The set of musculo-mechanical quations contains the two neu...
متن کاملMicro Particles Transport and Deposition in Realistic Geometry of Human Upper Airways
Realistic geometry of human upper airways from mouth to the end of trachea was reconstructed by implementing the CT-Scan images of a male subject. A computational model for analyzing the airflow in the airways was developed and several simulations were performed. To capture the anisotropy of the inhaled airflow in the upper airways, the Reynolds stress transport model of turbulence was used ...
متن کاملA New Approach in Preliminary Design of Closed Loop Solar Thermal Systems (RESEARCH NOTE)
In this paper, a model for closed loop solar system is presented and an attempt is made to generalize the model to be utilized for primary design of any solar active thermal system. This model may be used for systems in which gas or a liquid are fluids that flow. Two new parameters, namely, the system heat delivery factor and the system heat absorption factor are introduced in the model. These ...
متن کاملA 3D Musculo-Mechanical Model of the Salamander for the Study of Different Gaits and Modes of Locomotion
Computer simulation has been used to investigate several aspects of locomotion in salamanders. Here we introduce a three-dimensional forward dynamics mechanical model of a salamander, with physically realistic weight and size parameters. Movements of the four limbs and of the trunk and tail are generated by sets of linearly modeled skeletal muscles. In this study, activation of these muscles we...
متن کاملStatic forces and moments generated in the insect leg: comparison of a three-dimensional musculo-skeletal computer model with experimental measurements
As a first step towards the integration of information on neural control, biomechanics and isolated muscle function, we constructed a three-dimensional musculo-skeletal model of the hind leg of the death-head cockroach Blaberus discoidalis. We tested the model by measuring the maximum force generated in vivo by the hind leg of the cockroach, the coxa­femur joint angle and the position of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational physics
دوره 298 شماره
صفحات -
تاریخ انتشار 2015